Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI

نویسندگان

  • Tingting Fu
  • Qingxia Kong
  • Huaqiang Sheng
  • Lingyun Gao
چکیده

Purpose. Although active targeting of drugs using a magnetic-targeted drug delivery system (MTDS) with superparamagnetic iron oxide nanoparticles (SPIONs) is a very effective treatment approach for tumors and other illnesses, successful results of drug-resistant temporal lobe epilepsy (TLE) are unprecedented. A hallmark in the neuropathology of TLE is brain inflammation, in particular the activation of interleukin-1β (IL-1β) induced by activated glial cells, which has been considered a new mechanistic target for treatment. The purpose of this study was to determine the feasibility of the functionalized SPIONs with anti-IL-1β monoclonal antibody (mAb) attached to render MRI diagnoses and simultaneously provide targeted therapy with the neutralization of IL-1β overexpressed in epileptogenic zone of an acute rat model of TLE. Experimental Design. The anti-IL-1β mAb-SPIONs were studied in vivo versus plain SPIONs and saline. Lithium-chloride pilocarpine-induced TLE models (n = 60) were followed by Western blot, Perl's iron staining, Nissl staining, and immunofluorescent double-label staining after MRI examination. Results. The magnetic anti-IL-1β mAb-SPION administered intravenously, which crossed the BBB and was concentrated in the astrocytes and neurons in epileptogenic tissues, rendered these tissues visible on MRI and simultaneously delivered anti-IL-1β mAb to the epileptogenic focus. Conclusions. Our study provides the first evidence that the novel approach enhanced accumulation and the therapeutic effect of anti-IL-1β mAb by MTDS using SPIONs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis

Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as goo...

متن کامل

Systematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis

Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as goo...

متن کامل

Potential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times

Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016